

Determining the Function of T-DNA *rol* Genes in *Agrobacterium rhizogenes* Pathogenicity

Barbara M. Waring, Kaisa Kajala, Siobhan M. Brady Department of Plant Biology and Genome Center University of California, Davis DEPARTMENT OF PLANT SCIENCES

GENOME CENTER

A. rhizogenes integrates a specific region of DNA into its plant host

- Hairy root disease is characterized by the development of a thick, multi-branching root system
- A region of A. rhizogenes DNA (T-DNA) carries genes which cause hairy root disease
- The resulting phenotype provides useful metabolites for A. rhizogenes
- This process occurs naturally in many different plants

Biological Questions:

- Which genes are located within the T-DNA?
- In which cells are those genes expressed?
- Which genes are important for the resulting phenotype?
 - Which genes are sufficient for inducing hairy root growth?
 - Which genes are necessary for inducing hairy root disease?
- What is the function of the *rol* genes in the development and maintenance of hairy roots in tomatoes?

4. Are individual *rol* genes necessary for hairy root disease?

Using CRISPR/Cas9 gene editing, each of the four *rol* genes can be mutated while leaving the others intact to test if the individual genes are necessary for inducing hairy root disease.

1. T-DNA and *rol* genes were identified using bioinformatics and the T-DNA was confirmed using PCR

Various primer pairs were designed 100-300bp apart at locations upstream and downstream of the theoretical left and right borders of the T-DNA. These primers were tested using *A. rhizogenes* infected M82 tomato roots.

The location of the *rol* genes was deduced through the use of sequence homology to known gene sequences. These known sequences were aligned to the sequenced *A. rhizogenes* genome, revealing the location of each *rol* gene within the T-DNA.

5. Plant Infection and Propagation of Tissue Cultures

The constructs are transformed into *Agrobacterium* which is then introduced into tomatoes through wounded cotyledons. This process allows us to:

- Analyze the resulting phenotypes of each construct
- Visualize cell-type specific gene expression using confocal microscopy
- Propagate the tissue line for further research

2. Cell-type Specific Gene Expression

The *rol* gene promotors can be cloned into a series of vectors, which ultimately allows each promotor to drive expression of Green Fluorescent Protein (GFP).

3. Which *rol* genes are sufficient for inducing hairy root disease?

By cloning single *rol* genes into the proper vector and then transforming it into a strain of *Agrobacterium* which lacks T-DNA, we can test for the ability of that single gene to induce the hairy root phenotype

Conclusion

- The region of *A. rhizogenes* DNA which is transferred into the plant genome during infection has been identified.
- The identity and location of genes within the T-DNA have been identified based on homology to known genes.
- Further work should be done to identify the role of these genes in hairy root development

Acknowledgements

I would like to sincerely thank the Brady lab for providing me with the opportunity to contribute to their research. I would also like to acknowledge my postdoc, Kaisa Kajala, for being such an amazing and supportive mentor. Lastly, I would like to thank my family and husband for their never-ending support of my endeavors.

References

- 1. E. Pennisi, Science, 341:833-6, 2013
- 2. Geneious version 7.1 created by Biomatters
- 3. Ron, Mily et al. *Plant Physiology* 166.2 (2014): 455–469. *PMC*. Web. 23 Apr. 2015.
- 4. Invitrogen Life Technologies